api_server.py: rework so it actually kinda works
results are weirdly poor, but idk
This commit is contained in:
parent
46a6ae44af
commit
1bdf2e7776
@ -1,40 +1,24 @@
|
|||||||
|
import json
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from fastapi import FastAPI, File, UploadFile
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from cv2 import cv2
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from nets import Model
|
from cv2 import cv2
|
||||||
|
from fastapi import FastAPI, File, UploadFile
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
|
from nets import Model
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
# TODO
|
|
||||||
# beide modelle laden, jeweils eine gpu zuweisen
|
|
||||||
# routen bauen, gegen die man bilder werfen kann, die dann jeweils von einem modell interpretiert werden
|
|
||||||
# ergebnisse zurueck geben
|
|
||||||
#
|
|
||||||
# input validierung nicht vergessen
|
|
||||||
# paramter (bildgroesse etc.) konfigurierbar machen oder automatisch rausfinden?
|
|
||||||
# kommt ctd überhaupt mit was anderem klar?
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class IrImage(BaseModel):
|
|
||||||
image: np.array
|
|
||||||
|
|
||||||
|
|
||||||
reference_pattern_path = '/home/nils/kinect_reference_cropped.png'
|
reference_pattern_path = '/home/nils/kinect_reference_cropped.png'
|
||||||
reference_pattern = cv2.imread(reference_pattern_path)
|
reference_pattern = cv2.imread(reference_pattern_path)
|
||||||
model_path = "train_log/models/latest.pth"
|
model_path = "train_log/models/latest.pth"
|
||||||
device = torch.device('cuda:0')
|
# model_path = "train_log/models/epoch-100.pth"
|
||||||
|
device = torch.device('cuda')
|
||||||
|
|
||||||
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
||||||
model = nn.DataParallel(model, device_ids=[device])
|
model = nn.DataParallel(model, device_ids=[device])
|
||||||
@ -44,31 +28,26 @@ model.load_state_dict(state_dict, strict=True)
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
class NumpyEncoder(json.JSONEncoder):
|
||||||
def normalize_and_colormap(img):
|
def default(self, obj):
|
||||||
ret = (img - img.min()) / (img.max() - img.min()) * 255.0
|
if isinstance(obj, np.ndarray):
|
||||||
if isinstance(ret, torch.Tensor):
|
return obj.tolist()
|
||||||
ret = ret.cpu().detach().numpy()
|
return json.JSONEncoder.default(self, obj)
|
||||||
ret = ret.astype("uint8")
|
|
||||||
ret = cv2.applyColorMap(ret, cv2.COLORMAP_INFERNO)
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
|
||||||
def inference_ctd(left, right, model, n_iter=20):
|
def inference(left, right, model, n_iter=20):
|
||||||
print("Model Forwarding...")
|
print("Model Forwarding...")
|
||||||
# print(left.shape)
|
|
||||||
# left = left.cpu().detach().numpy()
|
|
||||||
# imgL = left
|
|
||||||
# imgR = right.cpu().detach().numpy()
|
|
||||||
imgL = np.ascontiguousarray(left[None, :, :, :])
|
imgL = np.ascontiguousarray(left[None, :, :, :])
|
||||||
imgR = np.ascontiguousarray(right[None, :, :, :])
|
imgR = np.ascontiguousarray(right[None, :, :, :])
|
||||||
|
|
||||||
# chosen for convenience
|
device = torch.device('cuda')
|
||||||
device = torch.device('cuda:0')
|
|
||||||
|
|
||||||
imgL = torch.tensor(imgL.astype("float32")).to(device)
|
imgL = torch.tensor(imgL.astype("float32")).to(device)
|
||||||
imgR = torch.tensor(imgR.astype("float32")).to(device)
|
imgR = torch.tensor(imgR.astype("float32")).to(device)
|
||||||
imgL = imgL.transpose(2, 3).transpose(1, 2)
|
|
||||||
|
# Funzt grob
|
||||||
|
imgR = imgR.transpose(1,2)
|
||||||
|
imgL = imgL.transpose(1,2)
|
||||||
|
|
||||||
imgL_dw2 = F.interpolate(
|
imgL_dw2 = F.interpolate(
|
||||||
imgL,
|
imgL,
|
||||||
@ -82,15 +61,14 @@ def inference_ctd(left, right, model, n_iter=20):
|
|||||||
mode="bilinear",
|
mode="bilinear",
|
||||||
align_corners=True,
|
align_corners=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
pred_flow_dw2 = model(image1=imgL_dw2, image2=imgR_dw2, iters=n_iter, flow_init=None)
|
pred_flow_dw2 = model(image1=imgL_dw2, image2=imgR_dw2, iters=n_iter, flow_init=None)
|
||||||
pred_flow = model(imgL, imgR, iters=n_iter, flow_init=pred_flow_dw2)
|
pred_flow = model(imgL, imgR, iters=n_iter, flow_init=pred_flow_dw2)
|
||||||
|
|
||||||
for i, (pf, pf_dw2) in enumerate(zip(pred_flow, pred_flow_dw2)):
|
pred_disp = torch.squeeze(pred_flow[:, 0, :, :]).cpu().detach().numpy()
|
||||||
pred_disp = torch.squeeze(pf[:, 0, :, :]).cpu().detach().numpy()
|
|
||||||
pred_disp_norm = cv2.normalize(pred_disp, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)
|
|
||||||
|
|
||||||
return pred_disp_norm
|
return pred_disp
|
||||||
|
|
||||||
|
|
||||||
@app.put("/ir")
|
@app.put("/ir")
|
||||||
@ -99,11 +77,21 @@ async def read_ir_input(file: UploadFile = File(...)):
|
|||||||
img = np.array(Image.open(BytesIO(await file.read())))
|
img = np.array(Image.open(BytesIO(await file.read())))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return {'error': 'couldn\'t read file', 'exception': e}
|
return {'error': 'couldn\'t read file', 'exception': e}
|
||||||
print(img.shape)
|
|
||||||
|
# img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)
|
||||||
if len(img.shape) == 2:
|
if len(img.shape) == 2:
|
||||||
img = np.stack((img for _ in range(3)))
|
img = cv2.merge([img for _ in range(3)])
|
||||||
pred_disp = inference_ctd(np.array(img), reference_pattern, None)
|
if img.shape == (1024, 1280, 3):
|
||||||
return {"pred_disp": pred_disp}
|
diff = (512 - 480) // 2
|
||||||
|
downsampled = cv2.pyrDown(img)
|
||||||
|
img = downsampled[diff:downsampled.shape[0]-diff, 0:downsampled.shape[1]]
|
||||||
|
|
||||||
|
img = img.transpose((1,2,0))
|
||||||
|
ref_pat = reference_pattern.transpose((1,2,0))
|
||||||
|
|
||||||
|
pred_disp = inference(img, ref_pat, model)
|
||||||
|
|
||||||
|
return json.dumps({'disp': pred_disp, 'reference': ref_pat, 'input': img}, cls=NumpyEncoder)
|
||||||
|
|
||||||
|
|
||||||
@app.get('/')
|
@app.get('/')
|
||||||
|
Loading…
Reference in New Issue
Block a user