|
|
@ -46,10 +46,12 @@ if __name__ == '__main__': |
|
|
|
left_img = imread_from_url("https://raw.githubusercontent.com/megvii-research/CREStereo/master/img/test/left.png") |
|
|
|
left_img = imread_from_url("https://raw.githubusercontent.com/megvii-research/CREStereo/master/img/test/left.png") |
|
|
|
right_img = imread_from_url("https://raw.githubusercontent.com/megvii-research/CREStereo/master/img/test/right.png") |
|
|
|
right_img = imread_from_url("https://raw.githubusercontent.com/megvii-research/CREStereo/master/img/test/right.png") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
in_h, in_w = left_img.shape[:2] |
|
|
|
|
|
|
|
|
|
|
|
# Resize image in case the GPU memory overflows |
|
|
|
# Resize image in case the GPU memory overflows |
|
|
|
eval_h, eval_w = (240,426) |
|
|
|
eval_h, eval_w = (1024//4,1536//4) |
|
|
|
imgL = cv2.resize(left, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
imgL = cv2.resize(left_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
imgR = cv2.resize(right, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
imgR = cv2.resize(right_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
|
|
|
|
model_path = "models/crestereo_eth3d.pth" |
|
|
|
model_path = "models/crestereo_eth3d.pth" |
|
|
|
|
|
|
|
|
|
|
@ -58,15 +60,18 @@ if __name__ == '__main__': |
|
|
|
model.to(device) |
|
|
|
model.to(device) |
|
|
|
model.eval() |
|
|
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
disp = inference(imgL, imgR, model, n_iter=20) |
|
|
|
pred = inference(imgL, imgR, model, n_iter=20) |
|
|
|
disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0 |
|
|
|
|
|
|
|
|
|
|
|
t = float(in_w) / float(eval_w) |
|
|
|
|
|
|
|
disp = cv2.resize(pred, (in_w, in_h), interpolation=cv2.INTER_LINEAR) * t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
disp_vis = (disp - disp.min()) / (256 - disp.min()) * 255.0 |
|
|
|
disp_vis = disp_vis.astype("uint8") |
|
|
|
disp_vis = disp_vis.astype("uint8") |
|
|
|
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) |
|
|
|
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) |
|
|
|
left_img = cv2.resize(left_img, disp_vis.shape[1::-1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
combined_img = np.hstack((left_img, disp_vis)) |
|
|
|
combined_img = np.hstack((left_img, disp_vis)) |
|
|
|
cv2.imshow("output", combined_img) |
|
|
|
cv2.imshow("output", combined_img) |
|
|
|
cv2.imwrite("output.jpg", combined_img) |
|
|
|
cv2.imwrite("output.jpg", disp_vis) |
|
|
|
cv2.waitKey(0) |
|
|
|
cv2.waitKey(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|