|
|
|
@ -32,20 +32,23 @@ def normalize_and_colormap(img): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_epoch(): |
|
|
|
|
global r |
|
|
|
|
epoch = input('Enter epoch number or "latest"\n') |
|
|
|
|
r = requests.post(f'{API_URL}/model/update/{epoch}') |
|
|
|
|
print(r.text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_data(r): |
|
|
|
|
def extract_data(data): |
|
|
|
|
# FIXME yuck, don't json the json |
|
|
|
|
data = json.loads(json.loads(r.text)) |
|
|
|
|
pred_disp = np.asarray(data['disp'], dtype='uint8') |
|
|
|
|
duration = data['duration'] |
|
|
|
|
|
|
|
|
|
# get result and rotate 90 deg |
|
|
|
|
pred_disp = cv2.transpose(np.asarray(data['disp'], dtype='uint8')) |
|
|
|
|
|
|
|
|
|
if input not in data: |
|
|
|
|
return pred_disp, duration |
|
|
|
|
|
|
|
|
|
in_img = np.asarray(data['input'], dtype='uint8').transpose((2, 0, 1)) |
|
|
|
|
ref_pat = np.asarray(data['reference'], dtype='uint8').transpose((2, 0, 1)) |
|
|
|
|
duration = data['duration'] |
|
|
|
|
pred_disp = cv2.transpose(pred_disp) |
|
|
|
|
return pred_disp, in_img, ref_pat, duration |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -65,32 +68,34 @@ def put_image(img_path): |
|
|
|
|
r = requests.put(f'{API_URL}/ir', files=openBin) |
|
|
|
|
print('received response') |
|
|
|
|
r.raise_for_status() |
|
|
|
|
return r |
|
|
|
|
data = json.loads(json.loads(r.text)) |
|
|
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
|
|
|
for img in os.scandir(img_dir): |
|
|
|
|
start = datetime.now() |
|
|
|
|
if 'ir' not in img.path: |
|
|
|
|
continue |
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
while True: |
|
|
|
|
for img in os.scandir(img_dir): |
|
|
|
|
start = datetime.now() |
|
|
|
|
if 'ir' not in img.path: |
|
|
|
|
continue |
|
|
|
|
|
|
|
|
|
# alternatively: use img.path for native size |
|
|
|
|
downsize_input_img() |
|
|
|
|
# alternatively: use img.path for native size |
|
|
|
|
downsize_input_img() |
|
|
|
|
|
|
|
|
|
r = put_image('buffer.png') |
|
|
|
|
pred_disp, in_img, ref_pat, duration = extract_data(r) |
|
|
|
|
data = put_image('buffer.png') |
|
|
|
|
pred_disp, in_img, ref_pat, duration = extract_data(data) |
|
|
|
|
|
|
|
|
|
print(f'inference took {duration:1.4f}s') |
|
|
|
|
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s') |
|
|
|
|
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n") |
|
|
|
|
print(f'inference took {duration:1.4f}s') |
|
|
|
|
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s') |
|
|
|
|
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n") |
|
|
|
|
|
|
|
|
|
cv2.imshow('Input Image', in_img) |
|
|
|
|
# cv2.imshow('Reference Image', ref_pat) |
|
|
|
|
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp)) |
|
|
|
|
cv2.imshow('Predicted Disparity', pred_disp) |
|
|
|
|
key = cv2.waitKey() |
|
|
|
|
cv2.imshow('Input Image', in_img) |
|
|
|
|
# cv2.imshow('Reference Image', ref_pat) |
|
|
|
|
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp)) |
|
|
|
|
cv2.imshow('Predicted Disparity', pred_disp) |
|
|
|
|
key = cv2.waitKey() |
|
|
|
|
|
|
|
|
|
if key == 113: |
|
|
|
|
quit() |
|
|
|
|
elif key == 101: |
|
|
|
|
change_epoch() |
|
|
|
|
if key == 113: |
|
|
|
|
quit() |
|
|
|
|
elif key == 101: |
|
|
|
|
change_epoch() |
|
|
|
|