frontend/__init__.py: general improvements

main
Nils Koch 3 years ago
parent 50581efa01
commit 922bd3ab80
  1. 61
      frontend/__init__.py

@ -32,20 +32,23 @@ def normalize_and_colormap(img):
def change_epoch():
global r
epoch = input('Enter epoch number or "latest"\n')
r = requests.post(f'{API_URL}/model/update/{epoch}')
print(r.text)
def extract_data(r):
def extract_data(data):
# FIXME yuck, don't json the json
data = json.loads(json.loads(r.text))
pred_disp = np.asarray(data['disp'], dtype='uint8')
duration = data['duration']
# get result and rotate 90 deg
pred_disp = cv2.transpose(np.asarray(data['disp'], dtype='uint8'))
if input not in data:
return pred_disp, duration
in_img = np.asarray(data['input'], dtype='uint8').transpose((2, 0, 1))
ref_pat = np.asarray(data['reference'], dtype='uint8').transpose((2, 0, 1))
duration = data['duration']
pred_disp = cv2.transpose(pred_disp)
return pred_disp, in_img, ref_pat, duration
@ -65,32 +68,34 @@ def put_image(img_path):
r = requests.put(f'{API_URL}/ir', files=openBin)
print('received response')
r.raise_for_status()
return r
data = json.loads(json.loads(r.text))
return data
while True:
for img in os.scandir(img_dir):
start = datetime.now()
if 'ir' not in img.path:
continue
if __name__ == '__main__':
while True:
for img in os.scandir(img_dir):
start = datetime.now()
if 'ir' not in img.path:
continue
# alternatively: use img.path for native size
downsize_input_img()
# alternatively: use img.path for native size
downsize_input_img()
r = put_image('buffer.png')
pred_disp, in_img, ref_pat, duration = extract_data(r)
data = put_image('buffer.png')
pred_disp, in_img, ref_pat, duration = extract_data(data)
print(f'inference took {duration:1.4f}s')
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s')
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n")
print(f'inference took {duration:1.4f}s')
print(f'pipeline and transfer took another {(datetime.now() - start).total_seconds() - float(duration):1.4f}s')
print(f"Pred. Disparity: \n\t{pred_disp.min():.{2}f}/{pred_disp.max():.{2}f}\n")
cv2.imshow('Input Image', in_img)
# cv2.imshow('Reference Image', ref_pat)
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp))
cv2.imshow('Predicted Disparity', pred_disp)
key = cv2.waitKey()
cv2.imshow('Input Image', in_img)
# cv2.imshow('Reference Image', ref_pat)
cv2.imshow('Normalized Predicted Disparity', normalize_and_colormap(pred_disp))
cv2.imshow('Predicted Disparity', pred_disp)
key = cv2.waitKey()
if key == 113:
quit()
elif key == 101:
change_epoch()
if key == 113:
quit()
elif key == 101:
change_epoch()

Loading…
Cancel
Save