test_model.py: reformat
This commit is contained in:
parent
17bf30fa2a
commit
9740e5d647
@ -17,10 +17,8 @@ device = 'cuda'
|
||||
wandb.init(project="crestereo", entity="cpt-captain")
|
||||
|
||||
|
||||
|
||||
#Ref: https://github.com/megvii-research/CREStereo/blob/master/test.py
|
||||
# Ref: https://github.com/megvii-research/CREStereo/blob/master/test.py
|
||||
def inference(left, right, model, n_iter=20):
|
||||
|
||||
print("Model Forwarding...")
|
||||
imgL = left.transpose(2, 0, 1)
|
||||
imgR = right.transpose(2, 0, 1)
|
||||
@ -53,7 +51,6 @@ def inference(left, right, model, n_iter=20):
|
||||
|
||||
|
||||
def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
|
||||
|
||||
print("Model Forwarding...")
|
||||
# print(left.shape)
|
||||
left = left.cpu().detach().numpy()
|
||||
@ -67,7 +64,7 @@ def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
|
||||
|
||||
imgL = torch.tensor(imgL.astype("float32")).to(device)
|
||||
imgR = torch.tensor(imgR.astype("float32")).to(device)
|
||||
imgL = imgL.transpose(2,3).transpose(1,2)
|
||||
imgL = imgL.transpose(2, 3).transpose(1, 2)
|
||||
|
||||
imgL_dw2 = F.interpolate(
|
||||
imgL,
|
||||
@ -111,13 +108,12 @@ def inference_ctd(left, right, gt_disp, mask, model, epoch, n_iter=20):
|
||||
caption=f"Pred. Disp. Dw2 It {i}\n{pred_disp_dw2.min():.{2}f}/{pred_disp_dw2.max():.{2}f}",
|
||||
)
|
||||
|
||||
|
||||
log['input_left'] = wandb.Image(left.astype('uint8'), caption="Input Left")
|
||||
log['input_right'] = wandb.Image(right.cpu().detach().numpy().transpose(1,2,0).astype('uint8'), caption="Input Right")
|
||||
log['input_right'] = wandb.Image(right.cpu().detach().numpy().transpose(1, 2, 0).astype('uint8'),
|
||||
caption="Input Right")
|
||||
|
||||
log['gt_disp'] = wandb.Image(gt_disp, caption=f"GT Disparity\n{gt_disp.min():.{2}f}/{gt_disp.max():.{2}f}")
|
||||
|
||||
|
||||
disp_error = gt_disp - disp
|
||||
log['disp_error'] = wandb.Image(
|
||||
normalize_and_colormap(disp_error),
|
||||
@ -131,7 +127,7 @@ def do_infer(left_img, right_img, gt_disp, model):
|
||||
in_h, in_w = left_img.shape[:2]
|
||||
|
||||
# Resize image in case the GPU memory overflows
|
||||
eval_h, eval_w = (in_h,in_w)
|
||||
eval_h, eval_w = (in_h, in_w)
|
||||
|
||||
# FIXME borked for some reason, hopefully not very important
|
||||
|
||||
@ -178,7 +174,6 @@ def do_infer(left_img, right_img, gt_disp, model):
|
||||
})
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# model_path = "models/crestereo_eth3d.pth"
|
||||
model_path = "train_log/models/latest.pth"
|
||||
@ -197,7 +192,7 @@ if __name__ == '__main__':
|
||||
wandb.config.update({'model_path': model_path, 'reference_pattern': reference_pattern_path, 'augment': augment})
|
||||
|
||||
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
|
||||
model = nn.DataParallel(model,device_ids=[device])
|
||||
model = nn.DataParallel(model, device_ids=[device])
|
||||
# model.load_state_dict(torch.load(model_path), strict=False)
|
||||
state_dict = torch.load(model_path)['state_dict']
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
@ -211,7 +206,7 @@ if __name__ == '__main__':
|
||||
in_h, in_w = left_img.shape[:2]
|
||||
|
||||
# Resize image in case the GPU memory overflows
|
||||
eval_h, eval_w = (in_h,in_w)
|
||||
eval_h, eval_w = (in_h, in_w)
|
||||
|
||||
# FIXME borked for some reason, hopefully not very important
|
||||
imgL = cv2.resize(left_img, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)
|
||||
@ -233,7 +228,8 @@ if __name__ == '__main__':
|
||||
# cv2.waitKey(0)
|
||||
|
||||
else:
|
||||
dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type, pattern_path=reference_pattern_path, augment=augment)
|
||||
dataset = CTDDataset('/media/Data1/connecting_the_dots_data/ctd_data/', data_type=data_type,
|
||||
pattern_path=reference_pattern_path, augment=augment)
|
||||
dataloader = DataLoader(dataset, args.batch_size, shuffle=True,
|
||||
num_workers=0, drop_last=False, persistent_workers=False, pin_memory=True)
|
||||
for batch in dataloader:
|
||||
@ -245,4 +241,3 @@ if __name__ == '__main__':
|
||||
imgR = right.cpu().detach().numpy()
|
||||
gt_disp = disparity
|
||||
do_infer(left_img, right_img, gt_disp, model)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user