import torch import torch.nn.functional as F import numpy as np #Ref: https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py def bilinear_sampler(img, coords, mode='bilinear', mask=False): """ Wrapper for grid_sample, uses pixel coordinates """ H, W = img.shape[-2:] xgrid, ygrid = coords.split([1,1], dim=-1) xgrid = 2*xgrid/(W-1) - 1 ygrid = 2*ygrid/(H-1) - 1 grid = torch.cat([xgrid, ygrid], dim=-1) img = F.grid_sample(img, grid, align_corners=True) if mask: mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) return img, mask.float() return img def coords_grid(batch, ht, wd, device): coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device), indexing='ij') coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) def manual_pad(x, pady, padx): pad = (padx, padx, pady, pady) return F.pad(x.clone().detach(), pad, "replicate")