CREStereo Repository for the 'Towards accurate and robust depth estimation' project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

31 lines
1013 B

import torch
import torch.nn.functional as F
import numpy as np
#Ref: https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def coords_grid(batch, ht, wd, device):
coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device), indexing='ij')
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch, 1, 1, 1)
def manual_pad(x, pady, padx):
pad = (padx, padx, pady, pady)
return F.pad(x.clone().detach(), pad, "replicate")