You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
connecting_the_dots/model/networks.py

567 lines
19 KiB

6 years ago
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import torchext
import co
class TimedModule(torch.nn.Module):
def __init__(self, mod_name):
super().__init__()
self.mod_name = mod_name
def tforward(self, *args, **kwargs):
raise Exception('not implemented')
def forward(self, *args, **kwargs):
torch.cuda.synchronize()
with co.gtimer.Ctx(self.mod_name):
x = self.tforward(*args, **kwargs)
torch.cuda.synchronize()
return x
class PosOutput(TimedModule):
def __init__(self, channels_in, type, im_height, im_width, alpha=1, beta=0, gamma=1, offset=0):
super().__init__(mod_name='PosOutput')
self.im_width = im_width
self.im_width = im_width
if type == 'pos':
self.layer = torch.nn.Sequential(
torch.nn.Conv2d(channels_in, 1, kernel_size=3, padding=1),
SigmoidAffine(alpha=alpha, beta=beta, gamma=gamma, offset=offset)
)
elif type == 'pos_row':
self.layer = torch.nn.Sequential(
MultiLinear(im_height, channels_in, 1),
SigmoidAffine(alpha=alpha, beta=beta, gamma=gamma, offset=offset)
)
self.u_pos = None
def tforward(self, x):
if self.u_pos is None:
self.u_pos = torch.arange(x.shape[3], dtype=torch.float32).view(1,1,1,-1)
self.u_pos = self.u_pos.to(x.device)
pos = self.layer(x)
disp = self.u_pos - pos
return disp
class OutputLayerFactory(object):
'''
Define type of output
type options:
linear: apply only conv channel, used for the edge decoder
disp: estimate the disparity
disp_row: independently estimate the disparity per row
pos: estimate the absolute location
pos_row: independently estimate the absolute location per row
'''
def __init__(self, type='disp', params={}):
self.type = type
self.params = params
def __call__(self, channels_in, imsize):
if self.type == 'linear':
return torch.nn.Conv2d(channels_in, 1, kernel_size=3, padding=1)
elif self.type == 'disp':
return torch.nn.Sequential(
torch.nn.Conv2d(channels_in, 1, kernel_size=3, padding=1),
SigmoidAffine(**self.params)
)
elif self.type == 'disp_row':
return torch.nn.Sequential(
MultiLinear(imsize[0], channels_in, 1),
SigmoidAffine(**self.params)
)
elif self.type == 'pos' or self.type == 'pos_row':
return PosOutput(channels_in, **self.params)
else:
raise Exception('unknown output layer type')
class SigmoidAffine(TimedModule):
def __init__(self, alpha=1, beta=0, gamma=1, offset=0):
super().__init__(mod_name='SigmoidAffine')
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.offset = offset
def tforward(self, x):
return torch.sigmoid(x/self.gamma - self.offset) * self.alpha + self.beta
class MultiLinear(TimedModule):
def __init__(self, n, channels_in, channels_out):
super().__init__(mod_name='MultiLinear')
self.channels_out = channels_out
self.mods = torch.nn.ModuleList()
for idx in range(n):
self.mods.append(torch.nn.Linear(channels_in, channels_out))
def tforward(self, x):
x = x.permute(2,0,3,1) # BxCxHxW => HxBxWxC
y = x.new_empty(*x.shape[:-1], self.channels_out)
for hidx in range(x.shape[0]):
y[hidx] = self.mods[hidx](x[hidx])
y = y.permute(1,3,0,2) # HxBxWxC => BxCxHxW
return y
class DispNetS(TimedModule):
'''
Disparity Decoder based on DispNetS
'''
def __init__(self, channels_in, imsizes, output_facs, output_ms=True, coordconv=False, weight_init=False, channel_multiplier=1):
super(DispNetS, self).__init__(mod_name='DispNetS')
self.output_ms = output_ms
self.coordconv = coordconv
conv_planes = channel_multiplier * np.array( [32, 64, 128, 256, 512, 512, 512] )
self.conv1 = self.downsample_conv(channels_in, conv_planes[0], kernel_size=7)
self.conv2 = self.downsample_conv(conv_planes[0], conv_planes[1], kernel_size=5)
self.conv3 = self.downsample_conv(conv_planes[1], conv_planes[2])
self.conv4 = self.downsample_conv(conv_planes[2], conv_planes[3])
self.conv5 = self.downsample_conv(conv_planes[3], conv_planes[4])
self.conv6 = self.downsample_conv(conv_planes[4], conv_planes[5])
self.conv7 = self.downsample_conv(conv_planes[5], conv_planes[6])
upconv_planes = channel_multiplier * np.array( [512, 512, 256, 128, 64, 32, 16] )
self.upconv7 = self.upconv(conv_planes[6], upconv_planes[0])
self.upconv6 = self.upconv(upconv_planes[0], upconv_planes[1])
self.upconv5 = self.upconv(upconv_planes[1], upconv_planes[2])
self.upconv4 = self.upconv(upconv_planes[2], upconv_planes[3])
self.upconv3 = self.upconv(upconv_planes[3], upconv_planes[4])
self.upconv2 = self.upconv(upconv_planes[4], upconv_planes[5])
self.upconv1 = self.upconv(upconv_planes[5], upconv_planes[6])
self.iconv7 = self.conv(upconv_planes[0] + conv_planes[5], upconv_planes[0])
self.iconv6 = self.conv(upconv_planes[1] + conv_planes[4], upconv_planes[1])
self.iconv5 = self.conv(upconv_planes[2] + conv_planes[3], upconv_planes[2])
self.iconv4 = self.conv(upconv_planes[3] + conv_planes[2], upconv_planes[3])
self.iconv3 = self.conv(1 + upconv_planes[4] + conv_planes[1], upconv_planes[4])
self.iconv2 = self.conv(1 + upconv_planes[5] + conv_planes[0], upconv_planes[5])
self.iconv1 = self.conv(1 + upconv_planes[6], upconv_planes[6])
if isinstance(output_facs, list):
self.predict_disp4 = output_facs[3](upconv_planes[3], imsizes[3])
self.predict_disp3 = output_facs[2](upconv_planes[4], imsizes[2])
self.predict_disp2 = output_facs[1](upconv_planes[5], imsizes[1])
self.predict_disp1 = output_facs[0](upconv_planes[6], imsizes[0])
else:
self.predict_disp4 = output_facs(upconv_planes[3], imsizes[3])
self.predict_disp3 = output_facs(upconv_planes[4], imsizes[2])
self.predict_disp2 = output_facs(upconv_planes[5], imsizes[1])
self.predict_disp1 = output_facs(upconv_planes[6], imsizes[0])
def init_weights(self):
for m in self.modules():
if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.ConvTranspose2d):
torch.nn.init.xavier_uniform_(m.weight, gain=0.1)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
def downsample_conv(self, in_planes, out_planes, kernel_size=3):
if self.coordconv:
conv = torchext.CoordConv2d(in_planes, out_planes, kernel_size=kernel_size, stride=2, padding=(kernel_size-1)//2)
else:
conv = torch.nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=2, padding=(kernel_size-1)//2)
return torch.nn.Sequential(
conv,
torch.nn.ReLU(inplace=True),
torch.nn.Conv2d(out_planes, out_planes, kernel_size=kernel_size, padding=(kernel_size-1)//2),
torch.nn.ReLU(inplace=True)
)
def conv(self, in_planes, out_planes):
return torch.nn.Sequential(
torch.nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=1),
torch.nn.ReLU(inplace=True)
)
def upconv(self, in_planes, out_planes):
return torch.nn.Sequential(
torch.nn.ConvTranspose2d(in_planes, out_planes, kernel_size=3, stride=2, padding=1, output_padding=1),
torch.nn.ReLU(inplace=True)
)
def crop_like(self, input, ref):
assert(input.size(2) >= ref.size(2) and input.size(3) >= ref.size(3))
return input[:, :, :ref.size(2), :ref.size(3)]
def tforward(self, x):
out_conv1 = self.conv1(x)
out_conv2 = self.conv2(out_conv1)
out_conv3 = self.conv3(out_conv2)
out_conv4 = self.conv4(out_conv3)
out_conv5 = self.conv5(out_conv4)
out_conv6 = self.conv6(out_conv5)
out_conv7 = self.conv7(out_conv6)
out_upconv7 = self.crop_like(self.upconv7(out_conv7), out_conv6)
concat7 = torch.cat((out_upconv7, out_conv6), 1)
out_iconv7 = self.iconv7(concat7)
out_upconv6 = self.crop_like(self.upconv6(out_iconv7), out_conv5)
concat6 = torch.cat((out_upconv6, out_conv5), 1)
out_iconv6 = self.iconv6(concat6)
out_upconv5 = self.crop_like(self.upconv5(out_iconv6), out_conv4)
concat5 = torch.cat((out_upconv5, out_conv4), 1)
out_iconv5 = self.iconv5(concat5)
out_upconv4 = self.crop_like(self.upconv4(out_iconv5), out_conv3)
concat4 = torch.cat((out_upconv4, out_conv3), 1)
out_iconv4 = self.iconv4(concat4)
disp4 = self.predict_disp4(out_iconv4)
out_upconv3 = self.crop_like(self.upconv3(out_iconv4), out_conv2)
disp4_up = self.crop_like(torch.nn.functional.interpolate(disp4, scale_factor=2, mode='bilinear', align_corners=False), out_conv2)
concat3 = torch.cat((out_upconv3, out_conv2, disp4_up), 1)
out_iconv3 = self.iconv3(concat3)
disp3 = self.predict_disp3(out_iconv3)
out_upconv2 = self.crop_like(self.upconv2(out_iconv3), out_conv1)
disp3_up = self.crop_like(torch.nn.functional.interpolate(disp3, scale_factor=2, mode='bilinear', align_corners=False), out_conv1)
concat2 = torch.cat((out_upconv2, out_conv1, disp3_up), 1)
out_iconv2 = self.iconv2(concat2)
disp2 = self.predict_disp2(out_iconv2)
out_upconv1 = self.crop_like(self.upconv1(out_iconv2), x)
disp2_up = self.crop_like(torch.nn.functional.interpolate(disp2, scale_factor=2, mode='bilinear', align_corners=False), x)
concat1 = torch.cat((out_upconv1, disp2_up), 1)
out_iconv1 = self.iconv1(concat1)
disp1 = self.predict_disp1(out_iconv1)
if self.output_ms:
return disp1, disp2, disp3, disp4
else:
return disp1
class DispNetShallow(DispNetS):
'''
Edge Decoder based on DispNetS with fewer layers
'''
def __init__(self, channels_in, imsizes, output_facs, output_ms=True, coordconv=False, weight_init=False):
super(DispNetShallow, self).__init__(channels_in, imsizes, output_facs, output_ms, coordconv, weight_init)
self.mod_name = 'DispNetShallow'
conv_planes = [32, 64, 128, 256, 512, 512, 512]
upconv_planes = [512, 512, 256, 128, 64, 32, 16]
self.iconv3 = self.conv(upconv_planes[4] + conv_planes[1], upconv_planes[4])
def tforward(self, x):
out_conv1 = self.conv1(x)
out_conv2 = self.conv2(out_conv1)
out_conv3 = self.conv3(out_conv2)
out_upconv3 = self.crop_like(self.upconv3(out_conv3), out_conv2)
concat3 = torch.cat((out_upconv3, out_conv2), 1)
out_iconv3 = self.iconv3(concat3)
disp3 = self.predict_disp3(out_iconv3)
out_upconv2 = self.crop_like(self.upconv2(out_iconv3), out_conv1)
disp3_up = self.crop_like(torch.nn.functional.interpolate(disp3, scale_factor=2, mode='bilinear', align_corners=False), out_conv1)
concat2 = torch.cat((out_upconv2, out_conv1, disp3_up), 1)
out_iconv2 = self.iconv2(concat2)
disp2 = self.predict_disp2(out_iconv2)
out_upconv1 = self.crop_like(self.upconv1(out_iconv2), x)
disp2_up = self.crop_like(torch.nn.functional.interpolate(disp2, scale_factor=2, mode='bilinear', align_corners=False), x)
concat1 = torch.cat((out_upconv1, disp2_up), 1)
out_iconv1 = self.iconv1(concat1)
disp1 = self.predict_disp1(out_iconv1)
if self.output_ms:
return disp1, disp2, disp3
else:
return disp1
class DispEdgeDecoders(TimedModule):
'''
Disparity Decoder and Edge Decoder
'''
def __init__(self, *args, max_disp=128, **kwargs):
super(DispEdgeDecoders, self).__init__(mod_name='DispEdgeDecoders')
output_facs = [OutputLayerFactory( type='disp', params={ 'alpha': max_disp/(2**s), 'beta': 0, 'gamma': 1, 'offset': 3}) for s in range(4)]
self.disp_decoder = DispNetS(*args, output_facs=output_facs, **kwargs)
output_facs = [OutputLayerFactory( type='linear' ) for s in range(4)]
self.edge_decoder = DispNetShallow(*args, output_facs=output_facs, **kwargs)
def tforward(self, x):
disp = self.disp_decoder(x)
edge = self.edge_decoder(x)
return disp, edge
class DispToDepth(TimedModule):
def __init__(self, focal_length, baseline):
super().__init__(mod_name='DispToDepth')
self.baseline_focal_length = baseline * focal_length
def tforward(self, disp):
disp = torch.nn.functional.relu(disp) + 1e-12
depth = self.baseline_focal_length / disp
return depth
class PosToDepth(DispToDepth):
def __init__(self, focal_length, baseline, im_height, im_width):
super().__init__(focal_length, baseline)
self.mod_name = 'PosToDepth'
self.im_height = im_height
self.im_width = im_width
self.u_pos = torch.arange(im_width, dtype=torch.float32).view(1,1,1,-1)
def tforward(self, pos):
self.u_pos = self.u_pos.to(pos.device)
disp = self.u_pos - pos
return super().forward(disp)
class RectifiedPatternSimilarityLoss(TimedModule):
'''
Photometric Loss
'''
def __init__(self, im_height, im_width, pattern, loss_type='census_sad', loss_eps=0.5):
super().__init__(mod_name='RectifiedPatternSimilarityLoss')
self.im_height = im_height
self.im_width = im_width
self.pattern = pattern.mean(dim=1, keepdim=True).contiguous()
u, v = np.meshgrid(range(im_width), range(im_height))
uv0 = np.stack((u,v), axis=2).reshape(-1,1)
uv0 = uv0.astype(np.float32).reshape(1,-1,2)
self.uv0 = torch.from_numpy(uv0)
self.loss_type = loss_type
self.loss_eps = loss_eps
def tforward(self, disp0, im, std=None):
self.pattern = self.pattern.to(disp0.device)
self.uv0 = self.uv0.to(disp0.device)
uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
uv1 = torch.empty_like(uv0)
uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
uv1[...,1] = uv0[...,1]
uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
mask = torch.ones_like(im)
if std is not None:
mask = mask*std
diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
val = (mask*diff).sum() / mask.sum()
return val, pattern_proj
class DisparityLoss(TimedModule):
'''
Disparity Loss
'''
def __init__(self):
super().__init__(mod_name='DisparityLoss')
self.sobel = SobelFilter(norm=False)
#if not edge_gt:
self.b0=0.0503428816795
self.b1=1.07274045944
#else:
# self.b0=0.0587115108967
# self.b1=1.51931190491
def tforward(self, disp, edge=None):
self.sobel=self.sobel.to(disp.device)
if edge is not None:
grad = self.sobel(disp)
grad = torch.sqrt(grad[:,0:1,...]**2 + grad[:,1:2,...]**2 + 1e-8)
pdf = (1-edge)/self.b0 * torch.exp(-torch.abs(grad)/self.b0) + \
edge/self.b1 * torch.exp(-torch.abs(grad)/self.b1)
val = torch.mean(-torch.log(pdf.clamp(min=1e-4)))
else:
# on qifeng's data we don't have ambient info
# therefore we supress edge everywhere
grad = self.sobel(disp)
grad = torch.sqrt(grad[:,0:1,...]**2 + grad[:,1:2,...]**2 + 1e-8)
grad= torch.clamp(grad, 0, 1.0)
val = torch.mean(grad)
return val
class ProjectionBaseLoss(TimedModule):
'''
Base module of the Geometric Loss
'''
def __init__(self, K, Ki, im_height, im_width):
super().__init__(mod_name='ProjectionBaseLoss')
self.K = K.view(-1,3,3)
self.im_height = im_height
self.im_width = im_width
u, v = np.meshgrid(range(im_width), range(im_height))
uv = np.stack((u,v,np.ones_like(u)), axis=2).reshape(-1,3)
ray = uv @ Ki.numpy().T
ray = ray.reshape(1,-1,3).astype(np.float32)
self.ray = torch.from_numpy(ray)
def transform(self, xyz, R=None, t=None):
if t is not None:
bs = xyz.shape[0]
xyz = xyz - t.reshape(bs,1,3)
if R is not None:
xyz = torch.bmm(xyz, R)
return xyz
def unproject(self, depth, R=None, t=None):
self.ray = self.ray.to(depth.device)
bs = depth.shape[0]
xyz = depth.reshape(bs,-1,1) * self.ray
xyz = self.transform(xyz, R, t)
return xyz
def project(self, xyz, R, t):
self.K = self.K.to(xyz.device)
bs = xyz.shape[0]
xyz = torch.bmm(xyz, R.transpose(1,2))
xyz = xyz + t.reshape(bs,1,3)
Kt = self.K.transpose(1,2).expand(bs,-1,-1)
uv = torch.bmm(xyz, Kt)
d = uv[:,:,2:3]
# avoid division by zero
uv = uv[:,:,:2] / (torch.nn.functional.relu(d) + 1e-12)
return uv, d
def tforward(self, depth0, R0, t0, R1, t1):
xyz = self.unproject(depth0, R0, t0)
return self.project(xyz, R1, t1)
class ProjectionDepthSimilarityLoss(ProjectionBaseLoss):
'''
Geometric Loss
'''
def __init__(self, *args, clamp=-1):
super().__init__(*args)
self.mod_name = 'ProjectionDepthSimilarityLoss'
self.clamp = clamp
def fwd(self, depth0, depth1, R0, t0, R1, t1):
uv1, d1 = super().tforward(depth0, R0, t0, R1, t1)
uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
depth10 = torch.nn.functional.grid_sample(depth1, uv1, padding_mode='border')
diff = torch.abs(d1.view(-1) - depth10.view(-1))
if self.clamp > 0:
diff = torch.clamp(diff, 0, self.clamp)
# return diff without clamping for debugging
return diff.mean()
def tforward(self, depth0, depth1, R0, t0, R1, t1):
l0 = self.fwd(depth0, depth1, R0, t0, R1, t1)
l1 = self.fwd(depth1, depth0, R1, t1, R0, t0)
return l0+l1
class LCN(TimedModule):
'''
Local Contract Normalization
'''
def __init__(self, radius, epsilon):
super().__init__(mod_name='LCN')
self.box_conv = torch.nn.Sequential(
torch.nn.ReflectionPad2d(radius),
torch.nn.Conv2d(1, 1, kernel_size=2*radius+1, bias=False)
)
self.box_conv[1].weight.requires_grad=False
self.box_conv[1].weight.fill_(1.)
self.epsilon = epsilon
self.radius = radius
def tforward(self, data):
boxs = self.box_conv(data)
avgs = boxs / (2*self.radius+1)**2
boxs_n2 = boxs**2
boxs_2n = self.box_conv(data**2)
stds = torch.sqrt(boxs_2n / (2*self.radius+1)**2 - avgs**2 + 1e-6)
stds = stds + self.epsilon
return (data - avgs) / stds, stds
class SobelFilter(TimedModule):
'''
Sobel Filter
'''
def __init__(self, norm=False):
super(SobelFilter, self).__init__(mod_name='SobelFilter')
kx = np.array([[-5, -4, 0, 4, 5],
[-8, -10, 0, 10, 8],
[-10, -20, 0, 20, 10],
[-8, -10, 0, 10, 8],
[-5, -4, 0, 4, 5]])/240.0
ky = kx.copy().transpose(1,0)
self.conv_x=torch.nn.Conv2d(1, 1, kernel_size=5, stride=1, padding=0, bias=False)
self.conv_x.weight=torch.nn.Parameter(torch.from_numpy(kx).float().unsqueeze(0).unsqueeze(0))
self.conv_y=torch.nn.Conv2d(1, 1, kernel_size=5, stride=1, padding=0, bias=False)
self.conv_y.weight=torch.nn.Parameter(torch.from_numpy(ky).float().unsqueeze(0).unsqueeze(0))
self.norm=norm
def tforward(self,x):
x = F.pad(x, (2,2,2,2), "replicate")
gx = self.conv_x(x)
gy = self.conv_y(x)
if self.norm:
return torch.sqrt(gx**2 + gy**2 + 1e-8)
else:
return torch.cat((gx, gy), dim=1)