|
|
@ -77,9 +77,9 @@ class TrackSynDataset(torchext.BaseDataset): |
|
|
|
ambs = [] |
|
|
|
ambs = [] |
|
|
|
grads = [] |
|
|
|
grads = [] |
|
|
|
for tidx in track_ind: |
|
|
|
for tidx in track_ind: |
|
|
|
imgs.append(np.load(os.path.join(sample_path, f'im{sidx}_{tidx}.npy'))) |
|
|
|
imgs.append(np.load(os.path.join(sample_path, f'im{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
ambs.append(np.load(os.path.join(sample_path, f'ambient{sidx}_{tidx}.npy'))) |
|
|
|
ambs.append(np.load(os.path.join(sample_path, f'ambient{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
grads.append(np.load(os.path.join(sample_path, f'grad{sidx}_{tidx}.npy'))) |
|
|
|
grads.append(np.load(os.path.join(sample_path, f'grad{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
ret[f'im{sidx}'] = np.stack(imgs, axis=0) |
|
|
|
ret[f'im{sidx}'] = np.stack(imgs, axis=0) |
|
|
|
ret[f'ambient{sidx}'] = np.stack(ambs, axis=0) |
|
|
|
ret[f'ambient{sidx}'] = np.stack(ambs, axis=0) |
|
|
|
ret[f'grad{sidx}'] = np.stack(grads, axis=0) |
|
|
|
ret[f'grad{sidx}'] = np.stack(grads, axis=0) |
|
|
@ -89,14 +89,14 @@ class TrackSynDataset(torchext.BaseDataset): |
|
|
|
R = [] |
|
|
|
R = [] |
|
|
|
t = [] |
|
|
|
t = [] |
|
|
|
for tidx in track_ind: |
|
|
|
for tidx in track_ind: |
|
|
|
disps.append(np.load(os.path.join(sample_path, f'disp0_{tidx}.npy'))) |
|
|
|
disps.append(np.load(os.path.join(sample_path, f'disp0_{tidx}.npy')), allow_pickle=True) |
|
|
|
R.append(np.load(os.path.join(sample_path, f'R_{tidx}.npy'))) |
|
|
|
R.append(np.load(os.path.join(sample_path, f'R_{tidx}.npy')), allow_pickle=True) |
|
|
|
t.append(np.load(os.path.join(sample_path, f't_{tidx}.npy'))) |
|
|
|
t.append(np.load(os.path.join(sample_path, f't_{tidx}.npy')), allow_pickle=True) |
|
|
|
ret[f'disp0'] = np.stack(disps, axis=0) |
|
|
|
ret[f'disp0'] = np.stack(disps, axis=0) |
|
|
|
ret['R'] = np.stack(R, axis=0) |
|
|
|
ret['R'] = np.stack(R, axis=0) |
|
|
|
ret['t'] = np.stack(t, axis=0) |
|
|
|
ret['t'] = np.stack(t, axis=0) |
|
|
|
|
|
|
|
|
|
|
|
blend_im = np.load(os.path.join(sample_path, 'blend_im.npy')) |
|
|
|
blend_im = np.load(os.path.join(sample_path, 'blend_im.npy'), allow_pickle=True) |
|
|
|
ret['blend_im'] = blend_im.astype(np.float32) |
|
|
|
ret['blend_im'] = blend_im.astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
#### apply data augmentation at different scales seperately, only work for max_shift=0 |
|
|
|
#### apply data augmentation at different scales seperately, only work for max_shift=0 |
|
|
|