Add wandb, make batch and image size configurable, fix some bugs, improve supervised loss function
This commit is contained in:
parent
cebf776714
commit
b7dbc59c25
@ -10,6 +10,7 @@ import matplotlib.pyplot as plt
|
|||||||
import cv2
|
import cv2
|
||||||
import torchvision.transforms as transforms
|
import torchvision.transforms as transforms
|
||||||
|
|
||||||
|
import wandb
|
||||||
|
|
||||||
import co
|
import co
|
||||||
import torchext
|
import torchext
|
||||||
@ -18,28 +19,33 @@ from data import dataset
|
|||||||
|
|
||||||
|
|
||||||
class Worker(torchext.Worker):
|
class Worker(torchext.Worker):
|
||||||
def __init__(self, args, num_workers=18, train_batch_size=4, test_batch_size=4, save_frequency=1, **kwargs):
|
def __init__(self, args, num_workers=18, train_batch_size=6, test_batch_size=6, save_frequency=1, **kwargs):
|
||||||
|
if 'batch_size' in dir(args):
|
||||||
|
train_batch_size = args.batch_size
|
||||||
|
test_batch_size = args.batch_size
|
||||||
super().__init__(args.output_dir, args.exp_name, epochs=args.epochs, num_workers=num_workers,
|
super().__init__(args.output_dir, args.exp_name, epochs=args.epochs, num_workers=num_workers,
|
||||||
train_batch_size=train_batch_size, test_batch_size=test_batch_size,
|
train_batch_size=train_batch_size, test_batch_size=test_batch_size,
|
||||||
save_frequency=save_frequency, **kwargs)
|
save_frequency=save_frequency, **kwargs)
|
||||||
|
|
||||||
self.ms = args.ms
|
self.ms = args.ms
|
||||||
self.pattern_path = args.pattern_path
|
self.pattern_path = args.pattern_path
|
||||||
self.lcn_radius = args.lcn_radius
|
self.lcn_radius = args.lcn_radius
|
||||||
self.dp_weight = args.dp_weight
|
self.dp_weight = args.dp_weight
|
||||||
self.data_type = args.data_type
|
self.data_type = args.data_type
|
||||||
|
|
||||||
self.imsizes = [(488, 648)]
|
|
||||||
for iter in range(3):
|
|
||||||
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
|
|
||||||
|
|
||||||
with open('config.json') as fp:
|
with open('config.json') as fp:
|
||||||
config = json.load(fp)
|
config = json.load(fp)
|
||||||
data_root = Path(config['DATA_ROOT'])
|
data_root = Path(config['DATA_ROOT'])
|
||||||
|
self.imsizes = [tuple(map(int, config['IMSIZE'].split(',')))]
|
||||||
|
|
||||||
|
for iter in range(3):
|
||||||
|
self.imsizes.append((int(self.imsizes[-1][0] / 2), int(self.imsizes[-1][1] / 2)))
|
||||||
|
|
||||||
self.settings_path = data_root / self.data_type / 'settings.pkl'
|
self.settings_path = data_root / self.data_type / 'settings.pkl'
|
||||||
sample_paths = sorted((data_root / self.data_type).glob('0*/'))
|
sample_paths = sorted((data_root / self.data_type).glob('0*/'))
|
||||||
|
|
||||||
self.train_paths = sample_paths[2 ** 10:]
|
self.train_paths = sample_paths[2 ** 10:]
|
||||||
|
# FIXME just for testing, make this bigger at some point
|
||||||
|
# self.train_paths = sample_paths[2 ** 3:]
|
||||||
self.test_paths = sample_paths[:2 ** 8]
|
self.test_paths = sample_paths[:2 ** 8]
|
||||||
|
|
||||||
# supervise the edge encoder with only 2**8 samples
|
# supervise the edge encoder with only 2**8 samples
|
||||||
@ -51,6 +57,25 @@ class Worker(torchext.Worker):
|
|||||||
self.sup_disp_loss = torch.nn.MSELoss()
|
self.sup_disp_loss = torch.nn.MSELoss()
|
||||||
self.edge_loss = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([0.1]).to(self.train_device))
|
self.edge_loss = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([0.1]).to(self.train_device))
|
||||||
|
|
||||||
|
# FIXME L2 Regularization, try it!!
|
||||||
|
# l2_lambda = 0.001
|
||||||
|
# l2_norm = sum(p.pow(2.0).sum()
|
||||||
|
# for p in net.parameters())
|
||||||
|
# self.sup_disp_loss = torch.nn.MSELoss() + l2_lambda * l2_norm
|
||||||
|
# FIXME try using log of this loss, otherwise it's very large compared to others
|
||||||
|
# self.sup_disp_loss = torch.nn.MSELoss()
|
||||||
|
class RMSLELoss(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.mse = torch.nn.MSELoss()
|
||||||
|
|
||||||
|
def forward(self, pred, actual):
|
||||||
|
# FIXME rename this if log is better than sqrt
|
||||||
|
return torch.log(self.mse(pred, actual))
|
||||||
|
# return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1)))
|
||||||
|
|
||||||
|
self.sup_disp_loss = RMSLELoss()
|
||||||
|
|
||||||
# evaluate in the region where opencv Block Matching has valid values
|
# evaluate in the region where opencv Block Matching has valid values
|
||||||
self.eval_mask = np.zeros(self.imsizes[0])
|
self.eval_mask = np.zeros(self.imsizes[0])
|
||||||
self.eval_mask[13:self.imsizes[0][0] - 13, 140:self.imsizes[0][1] - 13] = 1
|
self.eval_mask[13:self.imsizes[0][0] - 13, 140:self.imsizes[0][1] - 13] = 1
|
||||||
@ -108,6 +133,7 @@ class Worker(torchext.Worker):
|
|||||||
|
|
||||||
def loss_forward(self, out, train):
|
def loss_forward(self, out, train):
|
||||||
out, edge = out
|
out, edge = out
|
||||||
|
losses = {}
|
||||||
if not (isinstance(out, tuple) or isinstance(out, list)):
|
if not (isinstance(out, tuple) or isinstance(out, list)):
|
||||||
out = [out]
|
out = [out]
|
||||||
if not (isinstance(edge, tuple) or isinstance(edge, list)):
|
if not (isinstance(edge, tuple) or isinstance(edge, list)):
|
||||||
@ -118,11 +144,11 @@ class Worker(torchext.Worker):
|
|||||||
# apply photometric loss
|
# apply photometric loss
|
||||||
for s, l, o in zip(itertools.count(), self.losses, out):
|
for s, l, o in zip(itertools.count(), self.losses, out):
|
||||||
val, pattern_proj = l(o[0], self.data[f'im{s}'][:, 0:1, ...], self.data[f'std{s}'])
|
val, pattern_proj = l(o[0], self.data[f'im{s}'][:, 0:1, ...], self.data[f'std{s}'])
|
||||||
|
|
||||||
if s == 0:
|
if s == 0:
|
||||||
self.pattern_proj = pattern_proj.detach()
|
self.pattern_proj = pattern_proj.detach()
|
||||||
vals.append(val)
|
vals.append(val)
|
||||||
|
losses['photometric'] = val
|
||||||
# apply disparity loss
|
|
||||||
# 1-edge as ground truth edge if inversed
|
# 1-edge as ground truth edge if inversed
|
||||||
if isinstance(edge, tuple):
|
if isinstance(edge, tuple):
|
||||||
edge0 = 1 - torch.sigmoid(edge[0][0])
|
edge0 = 1 - torch.sigmoid(edge[0][0])
|
||||||
@ -130,11 +156,18 @@ class Worker(torchext.Worker):
|
|||||||
edge0 = 1 - torch.sigmoid(edge[0])
|
edge0 = 1 - torch.sigmoid(edge[0])
|
||||||
val = 0
|
val = 0
|
||||||
if isinstance(out[0], tuple):
|
if isinstance(out[0], tuple):
|
||||||
|
sup_loss = self.sup_disp_loss(out[0][1], self.data['disp0'])
|
||||||
|
val += sup_loss
|
||||||
|
|
||||||
val += self.sup_disp_loss(out[0][1], self.data['disp0'])
|
disp_loss = self.disparity_loss(out[0][0], edge0)
|
||||||
val += self.disparity_loss(out[0][0], edge0)
|
val += disp_loss
|
||||||
|
|
||||||
|
losses['GT Supervised disparity loss'] = sup_loss * self.dp_weight
|
||||||
|
losses['OG disparity loss'] = disp_loss * self.dp_weight
|
||||||
else:
|
else:
|
||||||
val += self.disparity_loss(out[0], edge0)
|
disp_loss = self.disparity_loss(out[0], edge0)
|
||||||
|
val += disp_loss
|
||||||
|
losses['OG disparity loss'] = disp_loss * self.dp_weight
|
||||||
if self.dp_weight > 0:
|
if self.dp_weight > 0:
|
||||||
vals.append(val * self.dp_weight)
|
vals.append(val * self.dp_weight)
|
||||||
|
|
||||||
@ -159,15 +192,20 @@ class Worker(torchext.Worker):
|
|||||||
self.edge = e.detach()
|
self.edge = e.detach()
|
||||||
self.edge = torch.sigmoid(self.edge)
|
self.edge = torch.sigmoid(self.edge)
|
||||||
self.edge_gt = grad.detach()
|
self.edge_gt = grad.detach()
|
||||||
|
losses['edge'] = val
|
||||||
vals.append(val)
|
vals.append(val)
|
||||||
|
|
||||||
|
wandb.log(losses)
|
||||||
return vals
|
return vals
|
||||||
|
|
||||||
def numpy_in_out(self, output):
|
def numpy_in_out(self, output):
|
||||||
output, edge = output
|
output, edge = output
|
||||||
if not (isinstance(output, tuple) or isinstance(output, list)):
|
if not (isinstance(output, tuple) or isinstance(output, list)):
|
||||||
output = [output]
|
output = [output]
|
||||||
es = output[0][0].detach().to('cpu').numpy()
|
if isinstance(output[0], tuple):
|
||||||
|
es = output[0][0].detach().to('cpu').numpy()
|
||||||
|
else:
|
||||||
|
es = output[0].detach().to('cpu').numpy()
|
||||||
gt = self.data['disp0'].to('cpu').numpy().astype(np.float32)
|
gt = self.data['disp0'].to('cpu').numpy().astype(np.float32)
|
||||||
im = self.data['im0'][:, 0:1, ...].detach().to('cpu').numpy()
|
im = self.data['im0'][:, 0:1, ...].detach().to('cpu').numpy()
|
||||||
|
|
||||||
@ -250,6 +288,7 @@ class Worker(torchext.Worker):
|
|||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.savefig(str(out_path))
|
plt.savefig(str(out_path))
|
||||||
|
wandb.log({f'results_{"_".join(out_path.stem.split("_")[:-1])}': plt})
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
def callback_train_post_backward(self, net, errs, output, epoch, batch_idx, masks=[]):
|
def callback_train_post_backward(self, net, errs, output, epoch, batch_idx, masks=[]):
|
||||||
@ -293,9 +332,4 @@ class Worker(torchext.Worker):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# FIXME Nicolas fixe idee
|
|
||||||
# SGBM nutzen, um GT zu finden
|
|
||||||
# bei dispnet (oder w/e) letzte paar layer 'dublizieren' (zweiten head bauen) und so mehrere Loss funktionen gleichzeitig trainieren
|
|
||||||
# L1 + L2 und dann im selben Backwardspass optimieren
|
|
||||||
# für das ganze forward pass anpassen
|
|
||||||
pass
|
pass
|
||||||
|
Loading…
Reference in New Issue
Block a user