|
|
|
@ -77,9 +77,9 @@ class TrackSynDataset(torchext.BaseDataset): |
|
|
|
|
ambs = [] |
|
|
|
|
grads = [] |
|
|
|
|
for tidx in track_ind: |
|
|
|
|
imgs.append(np.load(os.path.join(sample_path, f'im{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
|
ambs.append(np.load(os.path.join(sample_path, f'ambient{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
|
grads.append(np.load(os.path.join(sample_path, f'grad{sidx}_{tidx}.npy')), allow_pickle=True) |
|
|
|
|
imgs.append(np.load(os.path.join(sample_path, f'im{sidx}_{tidx}.npy'), allow_pickle=True)) |
|
|
|
|
ambs.append(np.load(os.path.join(sample_path, f'ambient{sidx}_{tidx}.npy'), allow_pickle=True)) |
|
|
|
|
grads.append(np.load(os.path.join(sample_path, f'grad{sidx}_{tidx}.npy'), allow_pickle=True)) |
|
|
|
|
ret[f'im{sidx}'] = np.stack(imgs, axis=0) |
|
|
|
|
ret[f'ambient{sidx}'] = np.stack(ambs, axis=0) |
|
|
|
|
ret[f'grad{sidx}'] = np.stack(grads, axis=0) |
|
|
|
|