You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
4.8 KiB
173 lines
4.8 KiB
#ifndef COMMON_CUDA
|
|
#define COMMON_CUDA
|
|
|
|
#include <cublas_v2.h>
|
|
#include <stdio.h>
|
|
|
|
#define DEBUG 0
|
|
#define CUDA_DEBUG_DEVICE_SYNC 0
|
|
|
|
// cuda check for cudaMalloc and so on
|
|
#define CUDA_CHECK(condition) \
|
|
/* Code block avoids redefinition of cudaError_t error */ \
|
|
do { \
|
|
if(CUDA_DEBUG_DEVICE_SYNC) { cudaDeviceSynchronize(); } \
|
|
cudaError_t error = condition; \
|
|
if(error != cudaSuccess) { \
|
|
printf("%s in %s at %d\n", cudaGetErrorString(error), __FILE__, __LINE__); \
|
|
exit(-1); \
|
|
} \
|
|
} while (0)
|
|
|
|
/// Get error string for error code.
|
|
/// @param error
|
|
inline const char* cublasGetErrorString(cublasStatus_t error) {
|
|
switch (error) {
|
|
case CUBLAS_STATUS_SUCCESS:
|
|
return "CUBLAS_STATUS_SUCCESS";
|
|
case CUBLAS_STATUS_NOT_INITIALIZED:
|
|
return "CUBLAS_STATUS_NOT_INITIALIZED";
|
|
case CUBLAS_STATUS_ALLOC_FAILED:
|
|
return "CUBLAS_STATUS_ALLOC_FAILED";
|
|
case CUBLAS_STATUS_INVALID_VALUE:
|
|
return "CUBLAS_STATUS_INVALID_VALUE";
|
|
case CUBLAS_STATUS_ARCH_MISMATCH:
|
|
return "CUBLAS_STATUS_ARCH_MISMATCH";
|
|
case CUBLAS_STATUS_MAPPING_ERROR:
|
|
return "CUBLAS_STATUS_MAPPING_ERROR";
|
|
case CUBLAS_STATUS_EXECUTION_FAILED:
|
|
return "CUBLAS_STATUS_EXECUTION_FAILED";
|
|
case CUBLAS_STATUS_INTERNAL_ERROR:
|
|
return "CUBLAS_STATUS_INTERNAL_ERROR";
|
|
case CUBLAS_STATUS_NOT_SUPPORTED:
|
|
return "CUBLAS_STATUS_NOT_SUPPORTED";
|
|
case CUBLAS_STATUS_LICENSE_ERROR:
|
|
return "CUBLAS_STATUS_LICENSE_ERROR";
|
|
}
|
|
return "Unknown cublas status";
|
|
}
|
|
|
|
#define CUBLAS_CHECK(condition) \
|
|
do { \
|
|
if(CUDA_DEBUG_DEVICE_SYNC) { cudaDeviceSynchronize(); } \
|
|
cublasStatus_t status = condition; \
|
|
if(status != CUBLAS_STATUS_SUCCESS) { \
|
|
printf("%s in %s at %d\n", cublasGetErrorString(status), __FILE__, __LINE__); \
|
|
exit(-1); \
|
|
} \
|
|
} while (0)
|
|
|
|
// check if there is a error after kernel execution
|
|
#define CUDA_POST_KERNEL_CHECK \
|
|
CUDA_CHECK(cudaPeekAtLastError()); \
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
#define CUDA_KERNEL_LOOP(i, n) \
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
|
|
|
|
const int CUDA_NUM_THREADS = 1024;
|
|
|
|
inline int GET_BLOCKS(const int N, const int N_THREADS=CUDA_NUM_THREADS) {
|
|
return (N + N_THREADS - 1) / N_THREADS;
|
|
}
|
|
|
|
template<typename T>
|
|
T* device_malloc(long N) {
|
|
T* dptr;
|
|
CUDA_CHECK(cudaMalloc(&dptr, N * sizeof(T)));
|
|
if(DEBUG) { printf("[DEBUG] device_malloc %p, %ld\n", dptr, N); }
|
|
return dptr;
|
|
}
|
|
|
|
template<typename T>
|
|
void device_free(T* dptr) {
|
|
if(DEBUG) { printf("[DEBUG] device_free %p\n", dptr); }
|
|
CUDA_CHECK(cudaFree(dptr));
|
|
}
|
|
|
|
template<typename T>
|
|
void host_to_device(const T* hptr, T* dptr, long N) {
|
|
if(DEBUG) { printf("[DEBUG] host_to_device %p => %p, %ld\n", hptr, dptr, N); }
|
|
CUDA_CHECK(cudaMemcpy(dptr, hptr, N * sizeof(T), cudaMemcpyHostToDevice));
|
|
}
|
|
|
|
template<typename T>
|
|
T* host_to_device_malloc(const T* hptr, long N) {
|
|
T* dptr = device_malloc<T>(N);
|
|
host_to_device(hptr, dptr, N);
|
|
return dptr;
|
|
}
|
|
|
|
template<typename T>
|
|
void device_to_host(const T* dptr, T* hptr, long N) {
|
|
if(DEBUG) { printf("[DEBUG] device_to_host %p => %p, %ld\n", dptr, hptr, N); }
|
|
CUDA_CHECK(cudaMemcpy(hptr, dptr, N * sizeof(T), cudaMemcpyDeviceToHost));
|
|
}
|
|
|
|
template<typename T>
|
|
T* device_to_host_malloc(const T* dptr, long N) {
|
|
T* hptr = new T[N];
|
|
device_to_host(dptr, hptr, N);
|
|
return hptr;
|
|
}
|
|
|
|
template<typename T>
|
|
void device_to_device(const T* dptr, T* hptr, long N) {
|
|
if(DEBUG) { printf("[DEBUG] device_to_device %p => %p, %ld\n", dptr, hptr, N); }
|
|
CUDA_CHECK(cudaMemcpy(hptr, dptr, N * sizeof(T), cudaMemcpyDeviceToDevice));
|
|
}
|
|
|
|
// https://github.com/parallel-forall/code-samples/blob/master/posts/cuda-aware-mpi-example/src/Device.cu
|
|
// https://github.com/treecode/Bonsai/blob/master/runtime/profiling/derived_atomic_functions.h
|
|
__device__ __forceinline__ void atomicMaxF(float * const address, const float value) {
|
|
if (*address >= value) {
|
|
return;
|
|
}
|
|
|
|
int * const address_as_i = (int *)address;
|
|
int old = * address_as_i, assumed;
|
|
|
|
do {
|
|
assumed = old;
|
|
if (__int_as_float(assumed) >= value) {
|
|
break;
|
|
}
|
|
|
|
old = atomicCAS(address_as_i, assumed, __float_as_int(value));
|
|
} while (assumed != old);
|
|
}
|
|
|
|
__device__ __forceinline__ void atomicMinF(float * const address, const float value) {
|
|
if (*address <= value) {
|
|
return;
|
|
}
|
|
|
|
int * const address_as_i = (int *)address;
|
|
int old = * address_as_i, assumed;
|
|
|
|
do {
|
|
assumed = old;
|
|
if (__int_as_float(assumed) <= value) {
|
|
break;
|
|
}
|
|
|
|
old = atomicCAS(address_as_i, assumed, __float_as_int(value));
|
|
} while (assumed != old);
|
|
}
|
|
|
|
|
|
template <typename FunctorT>
|
|
__global__ void iterate_kernel(FunctorT functor, int N) {
|
|
CUDA_KERNEL_LOOP(idx, N) {
|
|
functor(idx);
|
|
}
|
|
}
|
|
|
|
template <typename FunctorT>
|
|
void iterate_cuda(FunctorT functor, int N, int N_THREADS=CUDA_NUM_THREADS) {
|
|
iterate_kernel<<<GET_BLOCKS(N, N_THREADS), N_THREADS>>>(functor, N);
|
|
CUDA_POST_KERNEL_CHECK;
|
|
}
|
|
|
|
|
|
#endif
|
|
|